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Sine Resistance Network-Based Motion Planning
Approach for Autonomous Electric Vehicles in

Dynamic Environments
Tenglong Huang , Huihui Pan , Weichao Sun , Senior Member, IEEE, and Huijun Gao , Fellow, IEEE

Abstract— This article proposes a motion planning approach
for autonomous electric vehicles to generate an appropriate
planned path according to the time-varying surrounding infor-
mation. This approach utilizes the proposed novel sine resistance
network to mesh the road with the aim of improving the
planned path smoothness, which has the capability of generating
a continuous-curvature planned path that contributes to tracking
and reducing the jerkiness. Meanwhile, considering that the
classical artificial potential field (APF) method is only suitable
for the static scenarios, a bias oval APF is constructed to predict
the change of relative distance between the ego vehicle and
each obstacle by taking the speed information into account.
The proposed planning approach can ensure that the planned
path is collision-free in dynamic environments and the generated
path is smooth simultaneously. Cosimulation results in CarSim
and MATLAB/Simulink are provided to prove the advantage
and feasibility of the proposed motion planning approach for
autonomous electric vehicles.

Index Terms— Autonomous electric vehicles, bias oval artificial
potential field, collision free, motion planning, sine resistance
network.

I. INTRODUCTION

NUMEROUS collision accidents are caused by human
error and the traffic is getting more and more con-

gested [1]. Autonomous electric vehicles contribute to reduc-
ing traffic accidents and relieving traffic congestion, and thus,
they have attracted considerable interest from industry and
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academic researchers in the last decades. Relevant research
in academia emerged from the PROMETHEUS project, and
then, DARPA challenges brought about prosperity and rapid
development in this field [2]. The advanced technology for
autonomous electric vehicles has been one of the most popular
and promising fields of research in recent years [3], [4].

A typical autonomous electric vehicle is composed of three
modules: perception module, planning module, and control
module. Based on the surrounding information obtained from
the perception module, the motion planning module generates
the planned behavior and path, and the control module is
utilized to track the planned motion. The motion planning
module plays a vital role in autonomous electric vehicles and
is considered as the “brain” of the autonomous vehicle. As the
fundamental and essential module of autonomous vehicles,
there have been numerous research results about planning.
In comparison to combining path planning and velocity plan-
ning, generating the planned path and velocity separately can
reduce computational consumption [5]. Meanwhile, traditional
path planning has been studied in a considerable amount of
literature. To mention some research efforts, the geometry-
based method is developed in [6], where path generation is
based on the Voronoi cell algorithm with high computational
efficiency. The grid-based methods are proposed for generating
the shortest path such as Dijkstra’s algorithm [7] and A*
algorithm [8]. To find a collision-free planned path, the lattice
and network-based algorithm are investigated in [9], which can
avoid obstacles effectively. Note that the artificial potential
field (APF) method studied in [10]–[12] has already drawn
increased attention due to the ability to ensure collision-free.
Artificial intelligence (AI)-based methods have made signif-
icant progress, such as convolutional neural network (CNN)
algorithm in [13] and Q-learning algorithm in [14]. The CNN
algorithm can follow the lane without planning and control,
and the Q-learning algorithm is able to cope with different
road geometries. Nevertheless, many algorithms are derived
from the field of robotics, and the generated trajectories
may have discontinuous curvature, which is not suitable for
autonomous vehicle motion characteristics, such as grid-based
methods. Meanwhile, most planning algorithms treat obstacles
as static, which are difficult to deal with dynamic scenes,
such as the traditional APF method. Moreover, some planning
algorithms require massive data for training or are difficult
to use in actual scenarios, such as algorithms based on CNN
and reinforcement learning. Thus, it is essential to explore
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a collision-free planning algorithm suitable for autonomous
vehicles in dynamic scenarios. The detailed limitations and
advantages of these methods are summarized in [15]. Each
algorithm has high performance in the corresponding applica-
ble scenarios and leaves room for improvement at the same
time.

At present, the development of autonomous electric vehicles
is mainly limited by the planning module [16]. How to make
an appropriate decision and generate a smooth trajectory
based on the dynamic surrounding information is the primary
challenge, which further enhances the research significance of
motion planning. Note that an interesting and promising path
planning approach based on the square impedance network is
presented in [9] for the first time. Nevertheless, autonomous
vehicles with nonholonomic characteristics cannot follow the
planned rectangle path. To solve this problem, a novel dia-
mond grid is presented in [17], which handles this problem
successfully; however, the curvature of the planned path for
the ego vehicle is discontinuous obviously. The network-based
approaches can reflect the surrounding environment intuitively
by changing the resistance in each branch, which shows the
great potential for motion planning in traffic. Inspired by
this characteristic, the novel sine resistance network (SRN)
is proposed in this article. Meanwhile, compared with the
other planning algorithms, the APF method has the inherent
advantage of avoiding obstacles. However, the classic APF
method only applies to static scenarios, and the vehicle needs
to cope with the dynamic scenarios in real-world scenarios.
Moreover, some pioneering APF-based work has been pro-
posed for mobile robotics, such as [18]–[23]. However, the
planned path generated according to the potential field gradient
may not be well suitable for electric vehicles. Therefore,
a modified version of the APF method is proposed to pre-
dict the change of relative distance between the ego vehicle
and each obstacle in the dynamic environment by consider-
ing the speed information, and the method can generate a
collision-free path simultaneously in this article. To achieve
the desired planning performance and verify the planning
algorithm, an excellent trajectory tracking method is essential.
A high amount of tracking control approaches can be utilized
to follow the planned trajectory, which can be provided in the
comprehensive reviews [24], [25]. For the sake of safety and
comfort, the inputs, states, and outputs of autonomous vehicles
should satisfy the corresponding constraints. Thus, a controller
based on model predictive control (MPC) is designed to handle
the multiple constraints in this article. As discussed above,
motion planning is the major challenge in the autonomous
electric vehicles field, which motivates the study in this article.

This article focuses on the problem of local path planning
for autonomous electric vehicles. A novel motion planning and
tracking architecture is proposed for autonomous vehicles to
balance these performance criteria. The contributions of this
article can be listed as follows.

1) The sine grid is presented for the first time to construct
a novel SRN. The proposed novel sine grid avoids
the curvature discontinuity for the traditional network-
based methods. The curvature of the planned path is
continuous, and thus, the path smoothness and overall
performance are improved significantly.

2) The bias oval artificial potential field (BOAPF) is gen-
erated by taking the velocity information into account.
The modified APF method can cope with the dynamic
surrounding rather than only be applicable in the static
surrounding.

3) Different driver styles can be selected with different
conservative coefficients or sine grid structures by the
proposed method in this article. Meanwhile, the per-
formance comparison has been performed between the
state-of-the-art (SOTA) network-based algorithm named
diamond resistance network (DRN) and the proposed
algorithm.

II. OVERALL STRUCTURE OF THE

PROPOSED FRAMEWORK

The common objective of autonomous electric vehicles is
to implement an algorithm that can guarantee that the subject
vehicle is collision-free at each time instance. A schematic
representation of the overall framework for the proposed
algorithm to achieve this goal can be seen in Fig. 1.

The motion planning problem is solved by utilizing the
combination of SRN and BOAPF in this article. The road
is meshed by an SRN that is designed meticulously with the
aim of improving planned path smoothness. Based on the road
and surrounding obstacles information, the BOAPF can be
constructed. Compute the resistance value of each edge for the
SRN according to the superposed APF. The current for each
edge of SRN can be generated by adding the virtual voltage
source. Choose the maximum outward current to determine the
planned path. In this context, the motion planning is accom-
plished. Subsequently, the path-tracking problem is converted
into an optimization problem with the constraints based on the
single-track vehicle model.

The overall structure describes the main components of
the proposed approach, which consists of two modules: the
motion planning module to generate a collision-free path
and behavior and the path-tracking module based on MPC
to follow the planned path. To verify the feasibility of the
proposed algorithm, four typical scenarios are cosimulated in
CarSim and MATLAB/Simulink.

III. MAIN RESULTS

In this section, a method is presented to address the motion
planning problem for autonomous electric vehicles, which
generates a novel SRN to mesh the road for the first time and
constructs the BOAPF by considering the velocity information
of the vehicles to cope with the dynamic environments. Finally,
a planned collision-free path is obtained via a combination of
the SRN and BOAPF.

A. SRN Generation

Due to the curvature discontinuity appeared in the tradi-
tional grid-based path planning algorithm mentioned above,
performance may suffer degradation or even the algorithm is
not feasible. To mitigate this issue, a novel SRN is introduced
to generate a planned collision-free smooth path based on the
designed sine grid, as shown in Fig. 2.
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Fig. 1. Overall structure of the proposed approach.

Fig. 2. Proposed SRN.

Fig. 3. SRN on straight road with two lanes.

It is noteworthy that various driver styles can be selected
by designing different structures of the SRN. One of the most
crucial factors to choose the driver styles is the longitudinal
length of the sine grid for SRN. Compared to an aggressive
driver, the conservative driver needs a longer distance to
change into the adjacent lane. Moreover, the number of sine
grids for the SRN denotes the prediction distance for the
ego vehicle. Finally, the expected driver style can be chosen
by regulating the parameters to generate the corresponding
structure of the SRN.

To further demonstrate the operating principle of the SRN,
a typical scenario is shown in Fig. 3, where the road is covered
with the presented SRN, and the green lines locate at the
centerlines of the two lanes. Furthermore, the amplitude of the
sinusoidal function is set according to the width of the road,
and the period of the sinusoidal function is adjusted according
to the different driver styles.

Remark 1: The proposed SRN inspired by the notable and
promising path planning approaches [9], [17], [26] is used
to generate a continuous-curvature planned path and improve
path smoothness. The square impedance network presented
in [9] can generate a short planned path effectively, but the
nonholonomic characteristic may cause the vehicles unable to
drive in any direction to follow the planned rectangle path.
Huang et al. [17] developed a diamond grid, which solves this

problem successfully; however, the curvature of the planned
path for the ego vehicle is discontinuous, which leaves room
for improvement. In contrast, the proposed SRN used to mesh
the road is capable of generating a continuous-curvature path.
As a result, the proposed SRN in this section improves the
planned path smoothness significantly compared to the square
impedance network [9] and the diamond grid [17].

B. Bias Oval Artificial Potential Field
Different from the classical method to construct the APF

which only contains the APF of the obstacles in [10], the
proposed BOAPF considers the information of the road and
velocity information of obstacles. In this section, the total
superposed APF is composed of the repulsive potential fields
of the obstacles and the APF of the road. Moreover, consid-
ering that the outline of the vehicle is generally rectangular,
the potential field of the vehicle is established as an ellipse
instead of a circle.

1) APF of the Road: Considering that the risk coefficients
for the boundary of the road are largest for vehicles, the
risk coefficients for centerlines of two lanes are smallest,
and the risk coefficient for the centerline of the road is
situated between the two. A trigonometric function with a
small amplitude is utilized to generate the APF of the region
between the two centerlines of lanes. In contrast, exponential
functions with a large amplitude are designed to construct the
APF of the other region due to the surge of riskiness.

The mathematical expression of the APF for the road can
be described as

PR(X, Y ) =

⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩
α1

�
e|X−Xl | − 1

�
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2(X − Xl)
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W

4
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4

α1
�
e|X−Xu | − 1

�
, X ≥3W

4

(1)

where α1 = 0.5 and α2 = 0.5 are the gain coefficients of the
APF for the road, W is the lateral width of the road, Xu and Xl

are the lateral position of centerlines for the upper and lower
lanes, respectively, X and Y denote the lateral and longitudinal
coordinates, and PR(X, Y ) denotes the APF of the road at the
coordinate (X, Y ).

The 3-D diagrammatic representation of the function (1) and
the corresponding contour map are shown in Fig. 4(a) and (b),
respectively. Not only the constructed exponential function
value increases from the road centerline to edge but also

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on November 21,2024 at 07:06:40 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: SRN-BASED MOTION PLANNING APPROACH FOR AUTONOMOUS ELECTRIC VEHICLES 2865

Fig. 4. Detailed information of the potential field for road. (a) Potential field
of road. (b) Corresponding contour map.

Fig. 5. Detailed information of the potential field for obstacle. (a) Potential
field of obstacle. (b) Corresponding contour map.

its derivative increases accordingly, which could reflect that
the road risk changes reasonably. As shown in Fig. 4(b),
a bird’s-eye view of the road potential field is provided in
the corresponding contour map where the centerline gets the
minimum function value. This means that the ego vehicle
always attempts to keep in the centerline without consideration
of obstacles.

2) APF of Obstacle: Unlike the traditional APF method
using a circular APF, that is, the values of the APF at the same
distance from the center of the obstacle are equal. Considering
that vehicles are in general rectangular, the elliptic potential
field is used to construct the APF of obstacle in this section.

Therefore, the mathematical expression of the elliptic APF
for obstacle can be written as

PO(X, Y ) = β



e

− 1
2

�
(X−Xo)2

γ
1

2 + (Y−Yo )2

γ
2

2

	
− PC

�
(2)

where β = 60 is the gain coefficient of the APF for obstacle,
Xo and Yo denote the coordinate of the obstacle, γ1 = 1 and
γ2 = 9 are the form parameters of the APF for obstacle, PC =
0.0001 is a minimal positive constant, and PO(X, Y ) denotes
the APF of the obstacle at the coordinate (X, Y ).

The 3-D diagrammatic representation of the function (2)
and the corresponding contour map are shown in Fig. 5.

3) Total Superposed Potential Field: The total superposed
potential field (TSPF) is the sum of the potential field of the
road and potential fields of obstacles

PT = PR +
n�

i=1

POi (3)

where i denotes the i th obstacle, POi denotes the APF of the
i th obstacle, and PT denotes the TSPF.

Compared to the traditional APF method that contains
nothing but static environment information, this article takes
the velocity information into consideration by adjusting the
APF function of the obstacle to cope with the dynamic and
time-varying surrounding environment.

Different from the primitive TSPF function PT , the pre-
sented BOAPF can be expressed as follows:

PBOi (X, Y ) = β



e
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2

�
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2

γ
2
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�
(4)

where PBOi (X, Y ) denotes the APF of the i th obstacle, which
considers the velocity information.

Bias can be computed by considering the speed difference
as follows:

Biasi = λ
�
VOi − VEgo

�
(5)

where Biasi denotes the offset value of the i th obstacle, VEgo

is the longitudinal velocity of the ego vehicle in (XEgo and
YEgo), and VOi is the longitudinal velocity of the i th obstacle.
λ = 0.8 denotes the conservative coefficient, and the desired
diver style can be selected by regulating the parameter λ.

Hence, the BOAPF can be calculated as follows:

PBOAPF = PR +
n�

i=1

PBOi . (6)

Remark 2: In comparison to [10], we also further consider
the velocity information of the ego vehicle and obstacles to
construct the BOAPF. The APF of the vehicle is constructed
as an ellipse instead of a circle because the outline of the
vehicle is rectangular. Meanwhile, the BOAPF generated is
utilized to assign the resistance value of each edge in the SRN.
Furthermore, the resistance provides a basis for generating the
current of each edge for SRN to obtain the planned path.

Remark 3: We can choose the desired driver style by the
proposed method in this article. The driver style can be chosen
by adjusting the conservative coefficient λ or the period of
the sinusoidal function for the SRN. A larger conservative
coefficient λ means that the driver is more cautious about
speed differences, indicating a more conservative driver style.
In addition, a more conservative driver style can be selected
by enlarging the period of the sinusoidal function for the SRN.

C. Path Planning via SRN

In this section, the SRN is designed to model the environ-
ment because searching a shorter and collision-free path is
similar to the characteristic that current flows along the edge
with lower resistance in the circuit. By computing the current
of each edge for the resistance network, the planned path can
be generated.

The detailed structure of the proposed SRN is diagramed
in Fig. 6. The resistance of each edge for SRN is omitted
to illustrate the principle of planned path generation more
intuitively. The road with double lanes is utilized to explain the
principle of path generation as an example. Naturally, the SRN
is easily extended to other scenarios with structured roads.

Assign the resistance of each branch according to the value
of the BOAPF. Then, the current of each branch can be
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Fig. 6. Detailed structure of the proposed SRN.

Fig. 7. Relationship matrix Qn and H generation. (a) Qn matrix generation.
(b) H matrix generation.

calculated by adding a virtual voltage source as shown in
Fig. 6, where the principle to generate the current is based on
the Kirchhoff circuit laws. A resistance matrix R determined
by BOAPF can be written as follows:

R = diag[R1, R2, . . . , Ri , . . . , Rb] (7)

where Ri indicates the resistance of i th branch and b denotes
the number of the branches.

As shown in Fig. 6, the number of nodes and grids is
denoted as n and g, respectively. These numbers satisfy
equation b = g + n − 1 [9]. As shown in Fig. 7(a),
an n × b dimensional matrix Qn is computed to indicate the
relationship between branches and nodes, where −1 and +1
indicate the hypothesized direction of current flowing into or
out the corresponding node, respectively, and 0 indicates the
disconnection between the branch and the corresponding node.
Q can be computed by deleting any row from Qn . Moreover,
a (b−n +1)×b dimensional matrix H , as shown in Fig. 7(b),
is calculated to indicate the relationship between branches and
grids, where +1 indicates that the assumed direction of current
for the branch is the same as the assumed current direction of
the corresponding grid. The voltage vector V and the current
vector I can be written as follows:

Vb×1 = [V1, V2, . . . , Vi , . . . , Vb]T (8)

Ib×1 = [I1, I2 . . . , Ii , . . . , Ib]T . (9)

Fig. 8. Schematic of a simple scenario.

Based on the Kirchhoff circuit laws, the following equations
hold.

Qn Ib×1 = 0n×1 (10)

Hg×bVb×1 = 0g×1. (11)

Therefore, the following equation is established by adding
virtual voltage source Vs :

Ib×1 = 

Q(n−1)×b;

�
Hg×b Rb×b

��T \

0(n−1)×b; Hg×b

�

01×(b−1), Vs

�T
(12)

where Vs = 50(v) is chosen in this article and matrix Ib×1

denotes the current of the corresponding branch in the SRN,
as shown in Fig. 6. From the starting node to the target node,
choosing the direction of maximum outward current is to
generate the planned collision-free path, where the approach
is to compare the currents at each node as [27] did.

D. Considering Dynamic Environment Information
This section explains the principle of generating the planned

behavior and path by considering the dynamic environment
information. The velocity information is taken into considera-
tion by moving the primitive potential field. According to the
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Fig. 9. Schematic of overtake scenario.

Fig. 10. Schematic of SpeedDown scenario.

speed difference between each obstacle and the ego vehicle,
the corresponding offset distance is determined.

The schematic of a simple scenario is shown in Fig. 8, where
the blue car is the ego vehicle and the red car and purple car
are obstacles. The longitudinal velocities of the blue car, red
car, and purple car are 50, 60, and 20 km/h, respectively. The
BOAPF is generated by considering the velocity information to
cope with the dynamic and time-varying surrounding environ-
ment. To further elaborate the principle, two typical scenarios
are provided, as shown in Figs. 9 and 10.

The overtake scenario is shown in Fig. 9, where the primi-
tive APF and BOAPF are shown in parts A and B, respectively.
The red line in the sine grid denotes the planned path. The
planned path in part A is generated according to the static
surrounding environment, which indicates that the ego vehicle
attempts to overtake along the planned path. The red dotted
line in part B indicates that the ego vehicle still attempts
to overtake along the same planned path after considering
dynamic environment information. As a result, the ego vehicle
overtakes along the planned path in this scenario.

The SpeenDown scenario is shown in Fig. 10, where the
primitive APF is the same as the APF in Fig. 9(a). In this
scenario, different from the overtake scenario, the ego vehicle
attempts to change the lane at the beginning but gives up
this maneuver by considering the velocity information finally.
Specifically, the BOAPF changed due to the different lon-
gitudinal velocities of the red car, as shown in Fig. 10(b).
In Fig. 10(a), the ego vehicle attempts to overtake along the
red line, and however, the ego vehicle has a tendency to turn

Fig. 11. Single-track model for vehicle.

in order to ensure collision-free after considering dynamic
environment information, as shown in Fig. 10(b). It means that
the conditions of overtaking are not satisfied. Consequently,
the ego vehicle slows down instead of overtaking in this
scenario.

Remark 4: We developed the classic APF [10] by taking
the velocity information of the ego vehicle and obstacles
into consideration to cope with the dynamic environment.
As shown in Figs. 8–10, the feasible planned path for the
ego vehicle can be generated based on the primitive potential
field and BOAPF. By considering the velocity information and
modifying the classic APF, the proposed approach can cope
with the dynamic environment effectively.

Remark 5: The most critical information required in the
proposed algorithm mainly includes the position (XEgo and
YEgo) and velocity VEgo of the ego vehicle and the position (Xo

and Yo) and velocity Vo of obstacles, which are mainly used to
predict of the dynamic environment and construct the TSPF.
A large number of advanced devices and algorithms, including
lidar, camera, and vehicle-to-everything (V2X) technology, are
already available to collect the environmental information.

E. Motion Tracking Controller Design
The integrated motion planning and tracking framework [1],

[28] is conducive to validating the planned path that is
applicable to vehicle in practice and performance analysis.
Thus, to illustrate the performance enhancement and track
the planned smooth trajectory, the longitudinal and lateral
motion tracking controllers based on MPC are designed in
this section. The mathematical model of vehicle used in this
article is the 3-DOF single-track model [29]–[31], as shown
in Fig. 11, which takes the yaw motion, longitudinal motion
and lateral motion of vehicle into consideration. The mass of
the vehicle is 1720 kg, and the moment of inertia around the
z-axis is 4170 kgm2. The distances from center of gravity to
front and rear wheel are 1.233 and 1.467 m, respectively. The
half wheel track is 0.75 m. The cornering stiffness of front and
rear tires is 1093 and 1167 N/deg, respectively. Define w, vx ,
and vy as yaw rate, longitudinal velocity, and lateral velocity
of vehicle, respectively. The vehicle dynamics [32], which is
generated by linearization, can be written as follows:

ẋ = Ax + Bu (13)

y = Cx (14)

x = 

X vx Y vy ϕ w

�T
(15)
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where A denotes the state matrix, B is the input matrix, C
denotes the output matrix, y = [Y ϕ]T , and u = δ. The cost
function can be written as follows:

J (x(t),�Ut ) =
Np�
i=1

�ŷt+i,t − yreft+i,t �2
Q

+
Nc−1�
i=0

��ut+i,t�2
R (16)

where Nc and Np are the control horizon and the prediction
horizon, respectively. The subscripts i and ref denote the
i th instant and corresponding reference value, respectively.
�Ut � [�ut,t, . . . �ut+Nc−1,t ]T denotes the optimization
vector, which is composed of control increment at time t .
Moreover, Q and R indicate the weighting matrices for the
corresponding terms, ŷt+i,t represents the predicted output
sequence at time t + i obtained from xt,t = x(t) and
�ut,t , . . . ,�ut+i,t . The finite-horizon optimal control problem
can be solved online at time t as follows:

min
�Ut

J (x(t),�Ut ) (17)

s.t. xi+1,t = �Axi,t + �B�ui,t (17a)

yi,t = �Cxi,t (17b)

ymin ≤ yi,t ≤ ymax (17c)

i = t, . . . , t + Np

umin ≤ ui,t ≤ umax (17d)

�umin ≤ �ui,t ≤ �umax (17e)

ui,t = ui−1,t + �ui,t

i = t, . . . , t + Nc − 1 (17f)

where (17a) and (17b) are the discretized model (13) and (14)
using the Euler method, (17c) denotes the constraints of the
heading angle and the lateral location, and (17d) and (17e)
denote the constraint of the control quantity. The principle
of the longitudinal controller is similar to the lateral MPC
controller. According to the current velocity and acceleration
of the vehicle, the desired acceleration ades can be obtained
for generating the corresponding drive or brake to follow
the planned velocity. The presented controllers can track
the planned motion accurately and are utilized to verify the
applicability of the proposed framework.

Remark 6: Parameter α1 mainly affects the road potential
field in the area between the road centerline and the road
edge. α2 mainly acts on the remaining areas of the road. The
potential field value and the corresponding gradient of the area
increase with bigger parameters. β mainly affects the magni-
tude of the potential field of the obstacle, while parameters γ1

and γ2 mainly affect the lateral and longitudinal action ranges
of the potential field, respectively. λ can be chosen in (0 1.5],
which mainly represents the effect of velocity information on
the potential field distribution of the environment at future
moments. Weight matrices Q and R denote the cost on the
magnitudes of the tracking errors and control input, respec-
tively. The relative size among weights is more important
than the absolute size, reflecting the different relative cost
distributions of the designed controller for the controlled input

and different state tracking errors. Compared with the control
horizon Nc , the prediction horizon Np has a more important
and obvious impact on the control performance. The prediction
horizon Np reflects how far ahead the model predicts the future
system states. To a certain extent, increasing the prediction
horizon Np can make the control performance better, but it
will increase the demand for computational resources. At the
same time, when the prediction horizon Np is too large, it also
leads to the degradation of the control performance because
the controller will consider more future trends of the system
state. In this article, the weighting matrix Q = [30 0; 0 280],
R = 1, control horizon Nc = 5, and prediction horizon
Np = 15 for the lateral MPC controller. Meanwhile, Q = 100,
R = 0.01, Nc = 3, and Np = 3 for the longitudinal MPC
controller. Note that the final control effect is the result of
all parameters acting together and that these parameters can
be further carefully adjusted according to the actual system
response to obtain the desired control performance.

IV. COSIMULATIONS AND ANALYSIS

In this section, the cosimulations of typical scenarios are
provided to analyze the performance of the proposed new
framework and prove the applicability. The proposed approach
can be expanded to other scenarios with structured roads
easily. The illustrative examples are cosimulated by using
simulation platforms, where the proposed framework and
algorithm are implemented in MATLAB/Simulink and the
vehicle is modeled and parameterized in CarSim.

A. Performance Comparison With Classic APF
In order to further highlight the significance of the pro-

posed SRN-based approach, the comparative simulations are
performed in this section. The planned trajectories generated
by different methods are provided and analyzed, including the
classic APF (CPF) method [18], the SOTA resistance network-
based (DRN) approach, and the proposed SRN algorithm.
The superposed APF (TSPF) and the planned paths of CPF1
(goal attractive gain k p = 0.5 and obstacle repulsive gain
η = 10 [18]), CPF2 (k p = 0 and η = 10), CPF3 (k p = 0.3
and η = 10), CPF4 (k p = 1 and η = 10) generated by the
road APF (1), obstacle repulsive APF (2), and goal attractive
APF [18] are shown in Fig. 12. Different from CPF1-4, the
obstacle potential field and the corresponding repulsive force
of CPF4 (k p = 1.5 and η = 20) and CPF5 (k p = 2 and
η = 10) are obtained as detailed in [18] instead of (2).
Meanwhile, the planned paths of DRN and SRN are also
provided in Fig. 12.

The following useful conclusions can be drawn from the
simulation results in Fig. 12.

1) The proposed SRN-based algorithm could overcome
the local minimum problem efficiently. Note that CPF2
(k p = 0 and η = 10) encounters local minimum
without the goal attractive APF (k p = 0). The goal
APF [18] is unnecessary for the SRN-based approach
and not constructed in this article. Once the virtual
voltage source Vs is added, there must be a planned path
generated based on the Kirchhoff circuit laws, which
means that the local minimum does not exist.
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Fig. 12. Comparison of the planned trajectory. TSPF, IP, TP, RCU, RCL,
REU, and REL denote the total superposed potential field, initial position (20,
2), target position (60, 6), upper road centerline, lower road centerline, upper
road edge, and lower road edge, respectively.

2) The planned path is obtained from SRN based on current
comparison [27] search rather than on the potential field
gradient. The SRN is predesigned elaborately to ensure
that the planned path is suitable for the autonomous
electric vehicle.

3) The oscillation pheromone in the target point can be
avoided with the constructed SRN, as shown in Fig. 12.

Remark 7: In terms of the principle of the algorithm,
the APF is a motion planning method that requires less
computational resources than algorithms such as RRT and
lattice. The potential fields are used to reflect the surrounding
environment in this article, which means that the planning
approach proposed only requires the construction of an APF
and does not require the calculation of the gradient of the
potential field. Thus, the presented method can further opti-
mize the computational complexity. The method for construct-
ing the potential field and generating the planned paths based
on the sinusoidal network has been given explicitly. It is
clear that all the operations involved are simple addition,
subtraction, multiplication, and division. Meanwhile, the algo-
rithm was implemented using MATLAB 2016/Simulink and
validated with the aid of the vehicle model in the high-field
vehicle dynamics software CarSim 2016. The algorithm is
deployed on a Win10 operating system with hardware configu-
rations, including the Intel Core i7-10700 K CPU @3.80 GHz
processor and 16.0-GB RAM. The time required for a single
current generation is calculated to be about 0.00555 s, and
it takes about 0.0044 s to generate the desired path based
on the resistance network current by current comparison. The
total simulation time is set to 10 s, and the actual running
time of the cosimulation is about 2.4310 s with Nc = 15 and
Np = 15. The analysis and simulation results show that the
computational complexity of the proposed motion planning
method is feasible for practical applications. In the future, the
algorithm can be further optimized by combining the advanced
technologies, such as explicit MPC, parallel MPC, and MPC
combined with other controllers [33]–[35].

B. Performance Comparison With SOTA Resistance
Network Approach

This section based on the lane-change scenario compares the
performance of the SOTA algorithm named DRN [17] with the
proposed SRN. Cosimulation results in MATLAB/Simulink

Fig. 13. Comparison of tracking performance.

and CarSim show the advantage of the proposed new frame-
work.

To enhance the persuasiveness of the cosimulation results,
the single variable method is utilized to carry out cosimula-
tions. In the cosimulation, the same driver style is used in
the SRN and DRN. Meanwhile, the same parameters of the
controller are selected for SRN and DRN, and the velocity of
the ego vehicle is set to 50 km/h. As shown in Fig. 13, the
tracking performance of SRN and DRN is shown by the red
and blue lines, respectively. Obviously, the planned path can
be tracked by the proposed controller accurately.

To further analyze the performance capability of the ego
vehicle, the steering wheel angle, yaw rate, and roll are shown
in Fig. 13, in which the blue lines and red lines represent
the dynamic change courses for DRN and SRN, respectively.
As shown in Fig. 13, the steering wheel angle for DRN
changes dramatically, and the amplitude of the DRN is about
three times bigger than that of the SRN. It means that the
planned continuous-curvature path for SRN contributes to
tracking and improving the overall performance. By contrast,
the dynamic change processes of the steering wheel angle for
SRN are smoother and are more similar to the actual driving
habit.

Especially, the smoother dynamic change process of the
steering wheel angle results in a smoother yaw rate of the
ego vehicle. Moreover, the roll reflects the vertical motion,
which affects the drive comfort, and the more drastic roll angle
change process denotes the more violent shake of the ego
vehicle. As discussed above, SRN has a better performance
capability in comparison to DRN in nature.

As summarized in Table I, the maximum and minimum
steering wheel angle, yaw rate, and roll are listed to analyze the
dynamic change courses quantitatively. Specifically, compared
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TABLE I

COMPARISON OF MAXIMUM AND MINIMUM

Fig. 14. SpeedDown scenario.

with DRN, the maximum steering wheel angle (more than
60%), yaw rate (more than 50%), and roll (about 40%)
decrease significantly. Also, the minimum steering wheel angle
(more than 45%), yaw rate (more than 40%), and roll (about
15%) decrease simultaneously. It further illustrates that the
proposed new framework could make the ego vehicle run more
smoothly and obtain better overall performance.

C. Scenarios Study
In this section, four representative scenarios are provided to

illustrate the feasibility of the proposed new framework.
1) SpeedDown Scenario (S1): In this scenario, the target

velocity of the ego vehicle is set to 50 km/h and the velocities
of the vehicle in the adjacent lane and the front vehicle are set
to 40 km/h. As shown in Fig. 14, the blue vehicle denotes the
ego vehicle, the red vehicle and the purple vehicle represent
the obstacles, and the different numbers denote the correspond-
ing time of the vehicles.

According to the position and velocity information of the
obstacles and the ego vehicle, the BOAPF is constructed to
generate the planned motion, and then, the planned motion
is tracked by the designed controller. The actual movement
in this scenario is shown in Fig. 14, and the tracking per-
formance and longitudinal velocity of the ego vehicle are
shown in Fig. 15. Based on the dynamic surrounding infor-
mation, the ego vehicle gives up changing lanes and slows
down. The step-like planned speed is used to slow down
for the ego vehicle. Some wonderful ideas of speed profile
optimization can be found in [36] and [37], which is out
of the scope of this article. As shown in Figs. 14 and 15,
the collision-free motion can be generated and the planned
motion can be tracked accurately with the proposed new
framework.

2) Overtake Scenario (S2): In this scenario, the target
velocity of the ego vehicle is set to 50 km/h, and the velocities
of the vehicle in the adjacent lane and the front vehicle are set
to 40 and 20 km/h, respectively. As shown in Fig. 16, the ego
vehicle overtakes the front vehicle by changing the lane twice
successfully along the planned collision-free path. Note that
the corresponding states of the DRN approach are provided
in the figures to compare the performance with the proposed
SRN intuitively.

Fig. 15. Tracking performance and velocity information in S1.

Fig. 16. Overtake scenario.

Fig. 17. Tracking performance and velocity information in S2.

As shown in Figs. 17 and 18, the longitudinal velocity
of the ego vehicle keeps 50 km/h, the planned path can be
tracked accurately, and the ego vehicle runs smoothly. More
specifically, the current velocity of the ego vehicle is higher
than that of the front vehicle. Thus, the ego vehicle must
change the lane or slow down to ensure collision-free. The
ego vehicle attempts to change the lane with the primitive
APF, which is similar to Fig. 9(a). Meanwhile, like Fig. 9(b),
the ego vehicle still tries to change into the adjacent lane with
the constructed BOAPF by predicting the movement of other
vehicles.

3) Complex Scenario (S3): To further testify the effective-
ness of the proposed planning and tracking framework in
dynamic environment, a more complex scenario is constructed
in this section. The initial target velocity for the blue ego
vehicle is set as 40 km/h; meanwhile, the velocities of the

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on November 21,2024 at 07:06:40 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: SRN-BASED MOTION PLANNING APPROACH FOR AUTONOMOUS ELECTRIC VEHICLES 2871

Fig. 18. Steer wheel and yaw information in S2.

Fig. 19. Complex scenario.

obstacles are time-varying. The velocities of the purple vehi-
cle, red vehicle, and yellow vehicle are 20 + sin(2π ∗ t),
30 + 2sin(2π ∗ t), and 30 + 2sin(2π ∗ t) km/h, respectively.
As shown in Fig. 19, the ego vehicle changes into the adjacent
lane and slows down to ensure collision-free.

Specifically, the ego vehicle changes into the adjacent lane
by tracking the planned collision-free path, which is generated
by the proposed novel SRN, as shown in Figs. 6 and 9.
Then, the ego vehicle has to slow down to avoid collision,
as shown in Fig. 19. The detailed information is shown in
Figs. 20 and 21. The effectiveness of the proposed framework
based on the novel SRN is proven by the full test of the
different scenarios.

As shown in Fig. 19, the proposed novel SRN could
generate a collision-free planned path according to the sur-
rounding information. In comparison with the wonderful DRN
approach, the proposed SRN generates a continuous-curvature
planned path that contributes to tracking and improving overall
performance. In particular, the steering wheel is turned back
and forth for the DRN, while the steering wheel is turned
smoothly for the SRN. Meanwhile, the dynamic process of
the SRN is smoother than the DRN, and thus, the proposed
SRN obtains better performance than the DRN obviously.

4) Emergent Braking Scenario (S4): In this scenario, the
initial target velocity of the ego vehicle is set to 50 km/h,
and the initial velocities of the front vehicle and the vehicle
in the adjacent lane are also set to 50 km/h. However, the
vehicle in the adjacent lane and the front vehicle stop suddenly.
As detailed in Fig. 6, no path is feasible to overtake or change

Fig. 20. Tracking performance and velocity information in S3.

Fig. 21. Steer wheel and yaw information in S3.

lane, which causes the ego vehicle to brake emergently for
avoiding collision. Specifically, in the initial stage, the purple
vehicle in front, the red vehicle in the adjacent lane, and the
blue ego vehicle travel at 50 km/h, but with the sudden stop
of the vehicle in front and the vehicle in the adjacent lane,
this vehicle brakes urgently for safety. As shown in Fig. 22,
the vehicle can brake efficiently to avoid a collision and ensure
vehicle safety. In detail, the velocity information, vehicle pitch
angle denoted as red line, and longitudinal station denoted as
blue line obtained from the high-fidelity simulation software
CarSim are shown in Fig. 23. There are already some advanced
technologies that can be introduced to further optimize the
braking performance and safety of the system in the future,
such as ABS [38] and AEB [39]. In general, the superiority
and effectiveness of the proposed algorithm can be proved by
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Fig. 22. Emergent braking scenario.

Fig. 23. Velocity information and braking performance in S4.

the scenarios study and comparative simulation results with
the classic APF algorithm.

V. CONCLUSION

In this article, a new motion planning approach is pro-
posed by improving the classical resistance network and
APF method. The proposed SRN improves the planned path
smoothness significantly, and the proposed BOAPF can cope
with the dynamic environment by taking speed difference
into consideration. In addition, we can choose different con-
servative coefficients or different SRN structures to select
different driver styles. Cosimulation results in CarSim and
MATLAB/Simulink is able to prove the advantage and effec-
tiveness. Future work will attempt to verify the proposed
approach on a real vehicle and extend this algorithm to curved
road. Meanwhile, we will pay more attention to improving
robustness [40] and fault tolerance to cope with more volatile
and complicated scenarios by taking the sensor faults or
actuator faults [41] into consideration.
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