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Accurate and reliable sensor information is crucial for intelligent vehicles to ensure safety and reliability.
It is significant to devise effective solutions to diagnose possible sensor faults. In this paper, a sensor fault
detection, isolation, and estimation approach is developed for intelligent vehicle-integrated motion systems.
The Luenberger observer is designed and embedded into the fault diagnosis framework to real-time estimate
the system states. Interval observers are constructed for vehicle subsystems to estimate the interval bounds of
the corresponding observation errors. The estimation errors enter into the corresponding intervals generated by

the adaptive laws when the sensor fault is free. In the event of a sensor fault, it can be detected efficiently and
the faulty sensor can be isolated. Moreover, occurred sensor fault can be estimated by modifying the interval
observer structure. The simulation results in the standard J-Turn test scenario are provided to evaluate and
verify the effectiveness of the proposed method.

1. Introduction

Intelligent vehicles (Feng et al., 2023; Huang, Pan, Sun, & Gao,
2022; Pan, Chang, & Sun, 2023; Pan, Hong, Sun, & Jia, 2023; Spielberg,
Brown, Kapania, Kegelman, & Gerdes, 2019; Wang, Zhang, Ahn, & Xu,
2021) equipped with numerous sensors can acquire accurate real-time
vehicle state information and achieve superior perception capabilities,
which is the cornerstone for ensuring that vehicles can cope with
complex traffic environments and accomplish advanced decision, plan-
ning, and control tasks. More sensors contribute to realizing advanced
and sophisticated functionalities, however, the probability and risk of
sensor fault occurrences also increase correspondingly. The sensor fault
(Kommuri, Defoort, Karimi, & Veluvolu, 2016) means that the current
information feedback is inaccurate or even incorrect and is a severe
fault. In general, compared with actuator faults (Pan, Zhang, Sun, &
Yu, 2022; Wang & Deng, 2019; Wang, Ma, Pan, & Sun, 2023; Wang,
Pan, & Zhang, 2023), sensor faults cause much greater system perfor-
mance degradation. When sensor faults occur, timely detection of the
fault location and fault estimation contribute to reducing the adverse
effects caused by the sensor fault by employing hardware or software
redundancy. Therefore, when a sensor fault (Samy, Postlethwaite, & Gu,
2011) occurs, it is essential to perform fault detection, isolation, and
estimation for enhancing the system reliability which is also the focus
of this paper.

The existing sensor fault (Holzmann, Halfmann, Germann, Wiirten-
berger, & Isermann, 1997; Karimi, Chadli, Shi, & Zhang, 2014; Li,
Karimi, Zhang, Zhao, & Li, 2017) diagnosis methods mainly include
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signal-based, knowledge-based, and model-based diagnosis approaches
(Samy et al.,, 2011). Rich results about signal analysis-based fault
diagnosis approaches existed in the literature, however, this method is
sometimes not sensitive to potential faults. Knowledge-based methods
for detecting sensor faults rely on associating fault features with rele-
vant knowledge. Nevertheless, valid and enough knowledge is difficult
to collect. Neural networks (Pan, Zhang, & Sun, 2022; Wang, Gao, Zhao,
& Ahn, 2020) can be employed to detect faults online, however, the
implementation of the network structure is complicated. Additionally,
ensuring adequate and effective training of the designed network poses
a significant challenge. Model-based fault diagnosis approaches rely
on the system model characteristics and require model information.
Vehicles are an important part of modern industry and research into
modeling has yielded a wealth of results. Therefore, employing existing
research on vehicle modeling to design a model-based approach (Shen,
Yue, Goh, & Wang, 2018) for avoiding the above-mentioned problems
is possible while achieving effective fault diagnosis.

Model-based  methods, including weighted-least squares
(Havyarimana et al., 2023), linear matrix inequality (Karimi, Duffie,
& Dashkovskiy, 2010; Karimi & Gao, 2008; Karimi, Zapateiro, & Luo,
2010; Pertew, Marquez, & Zhao, 2007), Kalman filtering (Borguet &
Léonard, 2009) and interval observer (Blesa, Rotondo, Puig, & Nejjari,
2014; Puig et al., 2006; Wang, 2020; Zhang & Yang, 2017), etc, have
been successfully applied to fault diagnosis, which can detect, isolate,
or estimate fault effectively. Weighted-least squares can cope with
linear models, nonetheless, are difficult to deal with model uncertain-
ties arising from nonlinear properties. Meanwhile, the performance
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degradation of linear Kalman filtering also occurred caused by the
model uncertainties. Constrained Kalman filtering can cope with un-
certain parameters, however, the computational burden is expensive.
It is noteworthy that interval observers (Efimov, Raissi, & Zolghadri,
2013; Raissi, Videau, & Zolghadri, 2010) offer distinct advantages
in addressing disturbances and uncertainties, thereby garnering great
attention. When the sensor is fault-free, the corresponding state is
located at a reasonable interval. The upper and lower bounds of the
state interval can be used to detect, isolate, and estimate the fault.
Nevertheless, traditional interval observers require prior information
about perturbations and uncertainties to determine its interval range.
This paper, therefore, aims to design an interval observer which can
adaptively estimate interval range without the prior information of
perturbation and uncertainties.

Another challenge is the high complexity of the vehicle model
when multiple subsystems are considered. Most of the existing fault
diagnosis methods for vehicles are developed for one of the dynamics
subsystems. For example, for the vehicle vertical subsystem with model
uncertainty, Yan, Sun, He, and Yao (2018) proposes a fault diagnosis
method that can adaptively detect and isolate occurred faults. An event-
triggered zonotope-based fault diagnosis strategy is designed in Wang,
Fei, Yan, and Xu (2020), which is applied to the vehicle lateral dy-
namic subsystem. The probabilistic fault diagnosis strategy presented
in Oh, Park, Lee, and Yi (2018) can detect the sensor fault in the
vehicle longitudinal dynamic. Strong coupling and interactions exist
between different subsystems of intelligent vehicles, especially the lat-
eral and longitudinal dynamics, which improves the model complexity
and makes it difficult to design fault diagnosis methods. Therefore,
sensor fault diagnosis for vehicle lateral-longitudinal dynamics is more
challenging. Accordingly, this paper seeks an effective fault diagnosis
method for the coupled vehicle lateral-longitudinal dynamics, which
attempts to address the disturbance, and dynamics uncertainties and
achieve effective fault diagnosis.

As discussed above, it is unrealistic to determine the interval bounds
of conventional interval observers when lateral and longitudinal vehicle
dynamics are taken into account. Meanwhile, the threshold setting
for classical fixed-threshold fault detection methods poses difficulties.
Therefore, developing an adaptive sensor fault detection, isolation, and
estimation approach is necessary. This paper proposes an adaptive
model-based framework for detecting, isolating, and estimating sensor
faults in vehicle lateral-longitudinal coupled dynamical systems, taking
into account disturbances and uncertainties. Specifically,

+ A state estimation method based on the Luenberger observer is
constructed for lateral-longitudinal coupled dynamical systems,
which allows for efficient state estimation. Meanwhile, the ob-
server errors with reasonable observer gains are proved to be
bounded.

The interval observers without dependence on the prior knowl-
edge of perturbation and uncertainties are constructed. In the
absence of sensor faults, the constructed interval observers allow
for the estimation of the state to enter the estimated interval
boundary even in the presence of perturbations and uncertainties.
Additionally, the proposed interval observers can be adapted to
estimate corresponding faults interval bounds effectively, thereby
enabling sensor fault detection and isolation.

Further, a modification to the interval observer structure is pro-
posed and utilized to estimate the occurred sensor fault corre-
sponding to the faulty sensor. This modified interval observer
allows for effective adaptive estimation of the upper and lower
boundaries of the sensor fault interval.

The rest of this paper is organized as follows. The vehicle model,
containing the lateral and longitudinal vehicle dynamics, is briefly
introduced in Section 2, while the problem is stated and related lem-
mas are provided. The main results of the paper are summarized in
Section 3, including the presented state observer, and the interval

Control Engineering Practice 139 (2023) 105620

observers structures designed for different subsystems. Meanwhile, the
corresponding theorems and proofs are detailed in this section. The
analysis and proof of the modified interval observer for the faulty
sensor are also provided in this section. The presented sensor fault
detection, isolation, and estimation framework, for the vehicle with
lateral and longitudinal dynamics, in Section 2 is then validated with
simulation results in Section 4. Finally, the paper is concluded in
Section 5.

2. Vehicle modeling and problem statement

The kinematic relations and the lateral-longitudinal coupled dynam-
ics model of intelligent vehicles are formulated in this section. Addi-
tionally, the sensor faults considered in this paper for intelligent vehi-
cles are described detailedly. Meanwhile, the necessary preliminaries
are given in this section.

2.1. Vehicle model formulation

The kinematic relation of intelligent vehicle can be expressed as
E=T(p)9 (€)]

where & = [:X,éy,(p]T, 9 = [8X,8y,w]T, and the coordinate transfor-
mation matrix is defined as 7 (¢) := [cos@ —sing 0; sing cose 0; 0 0 1].
(&,.¢&,) represent vehicle position information in Cartesian coordinates.
9, and 9, denote the vehicle longitudinal and lateral velocity in the
body-fixed coordinate system, respectively. ¢ and w are the vehicle
yaw angle and yaw rate.

As in Fig. 1, a detailed illustration of the intelligent vehicle con-
taining lateral, longitudinal, and yaw dynamics is plotted. The detailed
definitions and key parameters of the vehicle are provided in Table 1,
which are the same as the parameters settings in Zhang, Sun, and Du
(2019). The vehicle dynamics model, as derived in Huang, Wang, Pan,
and Sun (2022), Sun, Zhang, and Liu (2018), Zhang et al. (2019), can
be written as

5 C g2 1
8 =0,m - T+ (0+0;) = fon + 4,

o (CHa), | (GG, <
§, = -Gl | (GheCh )iyt S,y

+fntd; @
o = =Gl )~ (Ca+Cd)m 4

79, r, (v1=02)

C‘,d“
o+ Sz +d;

where d := [dl,dz,d3]T is the external disturbance. f,, := [fnlafnz5fn3]T
(Huang, Wang, et al., 2022) denotes the unmodeled nonlinear terms.
The vector v := [01,02,03]T is defined as

vy =Ty cos0,+ T,
v, =T, cos0,+ T, 3
vy =146,

where T;; denotes the wheel torque, i = a/b represent the front or rear
wheel, and j = r/I are the right of left wheel. Define u := [ul,uz,u3]T,

1 C, C,d, d.
U= g (014v2), uy = Tiv3, and uy = o0 T Tx (v1—0,), the
kinematic and dynamic model can be expressed as
E=T(p)9 @
=L+ f,+u+d 5)
where
—3];[Ca - 0
= _CatC Cpdp=Cady _
L£09) = 0 TEN IR 9,
0 Cyd,—C,d, —Cyd3—C,d?

9.1, 9,1,
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Fig. 1. Illustration of intelligent vehicles containing lateral, longitudinal, and yaw
dynamics.

Table 1

Parameters descriptions.
Symbol Value Definition Unit
1, 1343.1 Moment of Inertial around z-axis kg m?
C, 22010 Front Wheel Cornering Stiffness N/rad
R. 0.31 Effective Radius of Wheel m
d, 1.56 Distance from Rear Axle to CG m
C 0.05 Aerodynamic Drag Factor N s?/m?
d, 1.04 Distance from Front Axle to CG m
M 1110 Vehicle Total Mass kg
d, 0.74 Half Width of the Wheel Track m
C, 22010 Rear Wheel Cornering Stiffness N/rad

Define V := [V,,V,,V,|"
coordinate system, we get

as the vehicle velocity vector in the global

é=p 6
V =0, V.0 + T (@u+ WEV, 1) %)

where Q = P(w)V + T(p)L (£, T™V)TTV, W := T(¢)(f,+d), and
P(w) = [0 —w 0;w 00; 00 0]. The corresponding reference signals
can be expressed as &, 1= [£,,.&,. 9,17 and V, := [V, V,,. VW]T.

Define the error signals & := ¢ - ¢, and &, := V — V,, the vehicle
integrated motion control error model without sensor faults can be
expressed as

& =& (8
&E=I+2 ©)
0, =J,&, 0, =& 10)

where T :=T(pu—¢,, and Z := Q& V. )+ W(E V1. J, =[100;01
0;00 1] and .J, =J, denote output matrixes of the position and attitude
subsystem and velocity subsystem, respectively. The corresponding
measurement outputs are defined as @, and O,, respectively.

2.2. Problem statement

This paper focuses on designing a sensor fault detection, isolation,
and estimation scheme for intelligent vehicles. The mathematical model
of intelligent vehicles is briefly introduced above in (1)-(10). Specifi-
cally, for the intelligent vehicles described in (6) and (7), a method is
proposed to implement sensor faults detection. Meanwhile, the sensor
fault isolation is achieved and the faulty sensor can be identified. Then,
the upper and lower bounds of the sensor fault are estimated.
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2.3. Preliminaries

Lemma 1. Given a matrix D € R? 4, the corresponding matrices D* and
D~ can be calculated as Dt = max {D, 0} and D~ = D — D. Meanwhile,
in this paper, for vectors or matrices x; and x,, x; < x, means that every
element in x, is smaller than the corresponding element in x,. For a constant
matrix D and q -dimensional vectors x, x, and x which satisfy x < x <,
then we have (Chebotarev, Efimov, Raissi, & Zolghadri, 2015)

D*x - D% < Dx an

D*% — D x > Dx (12)

Lemma 2. If the off-principal diagonal elements of D, are non-negative
and D, is a Hurwitz matrix, D, is a Metzler matrix. Given the system which
can be expressed in the following form (Raissi et al., 2010)

c0) =¢ 13

where D), is a Metzler matrix, then ¢ > 0, ¥V t > 0 holds when ¢ (1) > 0
and the initial vector ¢, > 0.

&) = Dy c(t) + ¢ 1),

3. Main results

In this section, the Luenberger observer is designed firstly to esti-
mate the system states. Then interval observers are constructed for O,
subsystem and O, subsystem to estimate the state observation errors.
The upper and lower bounds of the estimation errors in the absence of
sensor faults can be estimated adaptively by the constructed interval
observers. The occurrence of a sensor fault can result in a deviation
between the measured output and the corresponding estimation, caus-
ing it to exceed the estimation interval. Further, modified interval
observers are introduced to adaptively estimate the sensor fault. The
proposed sensor faults detection, isolation, and estimation framework
is detailed in this section.

3.1. Observer design

To estimate the error signals in (8)-(10), the following Luenberger
observer is introduced
& =& +C (0, -0O)) 14
& =1+, (0, - Oy) (15)

where € and &, denote the estimates of & and &, respectively.
C, :=diag(C,;, Cj,, C;3) and C, :=diag(C,;, C, C,3) are positive
constant diagonal matrices that denote the observer gains. @, := J, &,
and O, := J,&, are the estimations of the output vectors @, and O,.
Define the observer estimation error as follows

5 =6-8,5=5-& (16)

Correspondingly, the output estimation error can be expressed as

Z01=01-01,50, =0, -0, a7

According to (14)-(17), the estimated error dynamics can be de-
rived as follows

[n.

1=—ChE+ 5, Ea =15 (18)
2 =—Ch5E+Z, En =05 19

(1]

where the Z is assumed to be bounded, namely Z < Z. The bound
information Z is unknown.

Define Y| := —C,J,.Y, := -CJ0. W) 1= 13,2, i= 5,,¥, :=1;,2, =
Z with I denotes 3 x 3 identity matrix. The derivatives of the
estimation errors (18) and (19) can be rewritten as follows

[

1 =Y 5+ 2,50 =J15 (20)
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5 =Y5+¥2,50 =55 21

Theorem 1. By employing the observer constructed in (14) and (15)
with observer gains C; > 0, C, > 0, the observation errors =;,i = 1,2 and
output estimation errors Zq; are bounded and converge exponentially to a
neighborhood of 0. The convergence performance of the observation errors
E; and output estimation errors =, depend on the observer gains C, and
C,.

Proof. From (20) and (21), it is obvious that Y;,i = 1,2 is a diagonal
constant matrix and subject to Y; < 0. For s1mpl1c1ty, for each obser-
vation error 5.0 = 1,2,3 in ((21) ), we can obtain Ezj =Yy 5, +
¥, 2550 = 1,2,3. 5, Egy;» Z; and ¥;; denote the elements at the j th
row of 5, 5, Z and ¥,, respect1vely J, ; and Y;; represent the element
on the jth row and jth column of J and Y; Wthh are subject toY;; <0.
According to Z < Z, we can get =, ; < Yzj_zj + ’I’ZJZ Consequently,

for (21), it follows that Z,;(1) < Z,,(0)e"%' + Wz’ L (1-e""). Thus, it
can be inferred that the observation error =; aﬁd the corresponding
output estimation error are bounded. Namely, there exists a bound =,
such that =, < Z,. Similarly, for (20), we have =,;(1) < Z;,;(0)e"1/" +
% (1- YZ/’) j = 1,2,3. Obviously, the convergence performance of
E| and = Zw; depend on the observer parameters C, and C,. Above, it is
obvious that the observation errors =; and output estimation errors =,
are bounded and the exponential convergence property is proved. [l

Remark 1. An integrated motion controller is designed for vehicle
motion systems based on nonlinear sliding mode theory. The sliding
surface ¢ is chosen as ¢ := K, &| + &,. The detailed controller form can
be described as

u=T(@" {-K1& —QE&V.D)+V, — Kysign(o)} (22)
where K, := diag(K,,, K5, K3) > 0 is the positive diagonal controller
gain matrix. And the positive diagonal matrix £, := diag(K,, KLy,
K43) > 0 is the robust parameter. The stability of the fault-free vehicle
can be proved by selecting the Lyapunov function candidate V¢ = %oTo
and employing the stability theory. It can be demonstrated that the
system is stable with controller (22) when K, is sufficiently large.

Subsequently, interval observers are designed and introduced for
subsystems =, and £, in (20) and (21) to estimate the observation
errors of the Luenberger observer in (14) and (15). The real error signal
can be obtained according to the measurement signals when the sensors
for position, attitude, and velocity are healthy, namely, the sensor faults
are free. In this case, the observation errors =| and =, lie within a
reasonable interval by selecting the suitable Luenberger observer gains
C, and C,. The interval observers constructed for subsystems (20) and
(21) allow for adaptive estimation of the upper and lower boundaries
of the corresponding intervals.

First, the interval observer for the =, subsystem in (20) is designed
as follows

E =Y\ 5 +¥Z, - P2, (23)
5 =5 +¥Z,-¥ 2, 24)
o =J}E - I E, (25)
Zo =I5 - I E 26)

where =, and E, denote the interval upper bounds estimation
value of =, and =, respectively. Correspondingly, the lower bounds
estimation of =| and Zy, are defined as =, and Z,,. The detailed
adaptive laws of Z; and Z, are given below. As described in Lemma 1,
?’* Y Al ,J; can be calculated from ¥, and J,.
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For clarity, the dynamics of Z,;,i = 1,2,3 and Z,, are designed and
provided as follows
—ay;sgn (E(ﬂli - Zo1i ) ,
- Eo—Zou =P
Zli _ . _ B o1 — (911 1i (27)
ay; [sgn (501,' —Zo1 — Yu) - 1'»
Eou = Zou < b
0‘1;53“(5 o1 ~ oy )’
. Eo1i — EZ o1 > P
gli — _ ,_(911 =01 = ﬂll (28)
—&)sgn (5011 —=Ze1u " Vlf) - 1)7
Zoti —Zp1; < Pu

where @;;, ay;, 7y;, and p;; are interval observer design parameters that
together determine the update and change of the interval boundaries
Zy; and Z .. Moreover, these design parameters satisfy a;; > 0, ay; >0,
and j; > y; > 0. Meanwhile, the initial values of Z,; and Z are
subject to Z;(0) > 0 and Z;;(0) < 0.

Theorem 2. Based on the interval observer (23)—(28) designed for the
£, subsystem (20), when the position and attitude sensors are healthy,
using the Luenberger observer designed in (14) and (15), there exists a
finite moment tz such that the corresponding observer error = lies within
a reasonable lnterval after moment tz . Moreover, the upper and lower
interval boundaries = LELEeE OI,Z 1» and Z can be obtained by the
destgned interval observer (23)-(28) . Namely, Z <Z < Zl, E <E <
E1 Eo1 £ Eo < Eq hold when t > 1z,

Proof. Recalling (20), (23) and (24), it is derived that

E -5 =Y, (El e )+qf Z,-¥[Z, -¥2Z (29)

B -5 =Y (5 -5)+"Z, -2+ 2 (30)

It can be firstly proved that, by constructing the interval observer
structure as in (23)-(28), the following conclusion holds

Z,<2 szl,fortZI_:l (€30)]

If Z, <2 < Z does not hold, then it leads to Z;; < §“, or
Z,; > Z,;.i = 1,2,3. Consequently, in conjunction with (29) and (30),
Eli < Ej or E|; < £, may hold. Combining (20), (25), and (26) , we
can obtain Zgy; < Zp; OF Zo1; > S In this case. It is worth noting
that by devising the interval observers as in (27) and (28), the following
conclusions can be derived

- —ay; <0, Zo1i = Zo1 2 bui

2 =9 @ or2a; >0, Zgy _H(91i <7 (32)
0, ri < ot = Zo1i < b
a; >0, Eoti —Zo1; 2 b

2= —a; or—2ay; <0, Eg;;—Zo, <y (33)
0, 71 < Eo1i — Egy < b

~ With the aid of the properties of (32) and (33), it follows that
Zy;; > 0or gli < 0 when Z,;, > Zj; or Z;; < Z,, thus there exists a
such that Z . < Z); < Z,; holds for 1 > 1z, Let

finite moment Iz,
=L

tz, = max{tz i = 1,2,3}, we can obtain (31). When §1 <Z < Z,
combining Lemma 1, we can get

WrZ -V Z, -2, 20 (34)
W2, -V Z +YZ, 20 (35)

It is straightforward to observe that Y; is a Metzler matrix. By
invoking Lemma 2, when 7 > 7z , we can obtain

[1]
L0

<E < (36)

|t
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< Eg <

[1]

o1 (37)

The proof of Theorem 2 is completed. W

1

Similar to the =, subsystem (20), an interval observer is designed
for the =, subsystem (21) to estimate the interval upper and lower
bounds Z,, 5,54, and Z, of E, and Ey,. The detailed interval
observer design for =, subsystem (21) is provided below. Specifically,
E @25 Z4, and the derivatives of =, and =, can be calculated by

5 =Y5 4%, -2, (38)
£, =Y5,+¥Z,-¥2, (39)
Eo =05 -0 5, (40)
o =35, -5 5 (41)

where 5’/; i e J2+,,72‘ can be obtained as defined in Lemma 1. More-
over, the derivatives of Z, and Z, are designed and given detailedly
as

—a;sgn (5 o2 = Zoi ) ,
. Zoni — Eemi 2 Po;
= O2i O2i = P2i
Zz,' = — — (42)
; [SEN (:02, Eoni — Vzi) -1,
Eooi = Zoni < Pai
*;SgN (5 02 — Zoni ) >
. 5 = >p
§2i = 02 — _(‘)2, 2i (43)

a21 |SgI1 (E 02 — th 1|

Eoni = Egp; < Bai

where oy;, ay;, By, and y,; are the artificially given interval observer
parameters that satisfying a,; > 0, ay; > 0, and ,; > y,; > 0. Meanwhile,

the initial estimation values of the;pper and lower bounds Z, and 2z,
satisfy Z,(0) > 0 and Z,(0) < 0.

Theorem 3. The upper and lower bounds on the interval of =, and =,
without sensor faults can be effectively estimated by using interval observer
(38)—(43) for the subsystem ((21) ). As proved above, employing the
Luenberger observer constructed in (14) and (15) with reasonable observer
parameters setting, the estimation errors =, and =y, are bounded and
within an interval, when sensor faults are free. The interval upper and lower
bounds Ey, and =, can be obtained adaptively in a finite time t=, by
using the designed adaptive update laws (38)-(43). That is, for t > 1z,
2,222y 5,5 <5y, and £y < Zgy < Epy hold.
Proof. Based on (21) and the designed interval observer adaptive
update laws (38) and (39), we can derive

-5 =% (5-5)+ 17 -2, -1 (44)
5-5=X(5

-5+, -2, + V5 2, (45)

According to the interval observer constructed in (42) and (43), it
is obvious that the dynamics Z,; and §2i have the following properties

- —a; <0, Eoni = Eoai 2 bai

22 =) @ Or 23 >0, Egp — Zpy Sy (46)
0, Y21 < Eoni = Zo2i < B
a; >0, Eoi = Epp; 2 Poi

Z, = —ay; or — 2@ <0, Egy—Zgy <o 47)
0, 72i < Egai = Egy; < Bai

Similar to the analysis and proof of Theorem 2, we have the follow-
ing conclusion

2,2, 2y, fort 21z, (48)
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By using Lemma 1, we have
WyZ, - W2, ~ 2,20 (49)
Wy 2, -V Z, + W5 2,20 (50)
Meanwhile, according to Lemma 2, we can get
£,<5 <5, (51)
Eon S E S Em 52

hold for t > ¢z, thus completing the proof of Theorem 3. N
3.2. Sensor fault detection and isolation

By utilizing the developed interval observers (23)-(28) and (38)-
(43), the sensor faults can be detected and isolated effectively. In
this paper, it is assumed that only one sensor fault occurs at once.
In essential, when sensor faults are free, the constructed Luenberger
observer and interval observer enable =, and Z4, within the interval
(::@1’591) and (::@255(92) after moment 1z = max{iz,,1z, }. However,
Zy; Or Eg,; may exceed the corresponding estimation interval when
a sensor fault occurs which is used to detect and isolate the fault.
Specifically, from (10), the sensor fault model considered in this paper
can be expressed as

O;=6;+S; (53)

wherei=1,2and j =1,2,3. S; j denotes the occurred sensor fault, and
S;; = 0 means that the corresponding sensor is fault-free. Accordingly,
when the sensor is healthy, =g,;, Ze,; and the dynamics of =|;, £,; are
consistent with (20) and (21), namely

=Y 5+, 250 =Ty E, (54
Define G; := —C;,i = 1,2, £,; and Ep,; with sensor fault can be

written as

Z, = Y5, W25+ 6y (55)

Eoiy =Ty 5+ Sy (56)

where G;; represents the jth element on the diagonal.
By employing the designed Luenberger observer and interval ob-
servers, the following cases are possible

(a) After finite time iz, as proved in Theorems 2 and 3, Z¢,; enters
?e corresponding estimation interval. Namely, £, < Zp; <
Z@;; hold, when 1 > Iz, -

(b) There exists a moment f,,0 when 7 > Iy, Z1g, 2 ’5,',_’ Ewi; in the
O; subsystem exceed the estimation interval [Z, . Z ;] caused
by the occurred sensor fault. And tr  represents the moment
when the sensor fault occurs. It means that, when ¢ € [tEij’ lHu]’
we have Z;; SIERNCIe I When 1 > LT there is either Zq;; >
Z0ij OF Boij < Z)-

(©) ::@,.j cannot enter the correspondinE estimation interval [:T@ij,
Z ], that is, for 1 > 0, Zg,; ¢[§(9ij,5(9,~j].

According to the above cases, we can detect and isolate the sensor
fault accordingly. The specific principles are detailed as follows

+ Case (a) indicates that the corresponding sensor is healthy. If case
(a) holds, for i = 1,2, j = 1,2,3, it means that all sensors are
fault-free.

+ For Case (b), it means that a fault occurs in the corresponding
sensor. The fault occurrence time is fy,-i=1j=1or2 indicates
the corresponding position sensor is faulty. i = 1, j = 3 means
that the vehicle attitude sensor is unhealthy. i = 2, j = 1,2 or
3 indicates that the corresponding speed sensor is faulty. Thus,
the sensor fault occurrence time and location can be detected and
isolated as above.
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« Similar to the description for Case (b), we consider that for ¢ > 0,
the corresponding sensor is faulty for Case (c).

Remark 2. Sensor faults are generally more serious and difficult
to deal with than actuator faults (Wang & Xiao, 2004). Sensor fault
detection and isolation are essential to ensure the reliability and safety
of vehicle systems. Fault detection (He, Wang, & Zhou, 2009; Ji, He,
Shang, & Zhou, 2017) can provide users with fault warnings. However,
intelligent vehicles are equipped with a multitude of sensors to monitor
vehicle states. Thus, pinpointing faulty sensor location through fault
isolation can aid in timely addressing the occurred fault. Combined
with the sensor fault model (53), it can be seen that employing the fault
detection and isolation mechanisms designed above can detect faults
that occur and determine which vehicle position or velocity sensor is
faulty. Fault location information can help estimate the occurred fault
from a software perspective or replace the faulty sensor promptly to
mitigate or avoid potential adverse effects.

3.3. Sensor fault estimation

When the corresponding sensor fault is detected, the fault estima-
tion can be calculated by modifying the designed interval observer.
As detailed above, the corresponding observer structure for a healthy
sensor remains unchanged. Meanwhile, to estimate the sensor fault, the
corresponding modified interval observer is provided as follows

Ey =Y Ey V2 -2 4G5S, -GSy (57)
::U —Y,/_. +Y’J§ij—¥’i;2ij+Q;§U—Q;j5,-j (58)
oy =J E, - (59
= +=
Eoy =J =~ (60)
The adaptive dynamics of Z, ; and él_j are given as
—a;;sgn (5(9ij - 5(9ij> ,
- Eoij = Zoi 2 B
Zij _ . _ ~ Oij Oij ij (61)
a;; (Sgn <:0ij —Z0ij ~ }’ij) - 1‘ )
Eoij — Zoij < Bij
ESgn (EOij _:’:'(mj> ’
Z;= - ::Oij ~ oy 2 fi (62)
—ﬂ‘sgn (Zor = Zomi = vij) = 1|’
Zoij — Eoij < Bij

where @;; € R*,¢;; € RY,

parameters.
Moreover, by selecting the observer parameters x;; € R*,u; €

and B ;> vy > 0are the tunable observer

R*,p;; > ¢;; > 0, the interval bounds §l.j,§i ; of the sensor fault S;;
can be calculated as below

—H;;S8n (EOij - 5(9[,‘) >
. o —Fo. >
= =0ij ~ =0ij = P
Sij:< . _ ij i j ij (63)
Hij Sgn(s(aij—:@ij—fij)—1|v
Eoij — Eoij < pij
Hi;SgN (Emij _::Oij) >
_E_ >p.
. Zo E o 2P
;= R (64)
—y sgn(:@ij—i@j—fu)—l',
Zoij = Zo; < Pij
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Theorem 4. By using the modified interval observer (60)-(64), Z; ; and
Egi; with sensor fault can enter the corresponding estimation interval in a
finite time Iz, . Meanwhile, the reconstructed observer (63) and (64) can
effectively esﬁmate the upper and lower interval bounds of sensor fault S;;.

Namely, fort > tz,, 2, < Ep;j < Zgy and S;; < 55 < S hold.

Proof. Combining (57)-(60) and sensor faults (55)-(56) , we can get

= +Z -
- —f/) 92 -2, -2y

+G5S, =68, = GiySy (65)
Zj— E; =Yy (5,,- - ::ij) +¥, 2, -2+ 2
6,5y = (658, - 6;5) (66)

Meanwhile, according to the designed adaptive laws (63)-(64), we
can derive

o —H;; <0, Eoij — Zoij 2 pij

Sij =\ Hi or 2 >0, Egy—Zp; <t (67)
0, Ci; < Eoij — Eoij < pij
Hij >0, Z0ij ~ Zpij Z Pij

§ij =9 ~Hij OT = 2@ <0, Zg;—Ey; < (68)
0, ij < Zoij = Zoij < Pij

Similar to the analysis and proof of Theorems 2 and 3, combining
(65)-(68), we can prove Ey;; € [§(9ij’50ij] and S € [QU,SU] hold,
fort>tz.. W

Remark 3. To enhance clarity and assist users in selecting parameters,
the impact of the key parameters in the proposed fault diagnosis frame-
work is summarized. The Luenberger observer gains C;,i = 1,2 subject
to C; > 0, which directly determines the convergence performance of
the observation errors =;,i = 1,2 as detailed in Theorem 1. The interval
observer parameters Bij»vij» pijsCij € R*,i = 1,2,j = 1,2,3 subject to
Bij > vij» pi; > ¢ affect the corresponding interval width. Compared to
the conventional interval observer (Zhang & Yang, 2017), more com-
pact interval estimations can be obtained using the proposed adaptive
update laws. And the update rates of the interval boundary estimations
are directly influenced by parameters a;;,q;;, ;;, Hij € R*. Opting
for larger @;;, a;;, j;;, 4;; enables the bounds estimation to be updated
more swiftly. Conversely, selecting smaller a;; 7 ®j» Hij» Hy; yields finer
bounds estimations. The parameters of the observer need to be carefully
adjusted and customized by users to satisfy specific requirements. The
performance influences of the main sensitive parameters are summa-
rized above. For different fault scenarios, further adjustments may be
required to change the parameters to achieve satisfactory performance.

4. Simulation results

In order to validate the proposed sensor fault detection, isolation,
and estimation framework, simulation results based on the J-Turn
scenario are provided in this section. The definition of parameters in
this section remains the same as in Section 3, with the same letters or
symbols having the same meaning. In practice, the parameters can be
adjusted in conjunction with the analysis in Remark 3 until satisfactory
performance is achieved. The effectiveness of the Luenberger observer
(14)—(15) and the interval observers (23)-(26) and (38)-(41) designed
for £, and =, subsystems can be proved by the simulation results.
Meanwhile, it can be observed that the designed fault detection and
isolation framework can detect sensor faults and isolate the faulty
sensor efficiently. Further, the modified interval observer can achieve
an effective estimation of the upper and lower interval bounds of the
sensor fault.

The J-Turn condition (Zhang et al., 2019) as the standard test
condition for vehicles is used in this paper as the simulation test
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Fig. 2. Steering-wheel angle input for J-Turn scenario.
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Fig. 3. &, estimation for S1.

scenario. The steering wheel angle input for the J-Turn (Zhang et al.,
2019) simulation scenario is plotted in Fig. 2. The longitudinal de-
sired time-varying velocity is set to 10 + sin(0.5z¢). White Gaussian
noises with a power equal to 0.1 are added to vehicle sensors. The
corresponding reference trajectory can be calculated by the reference
value generation method in Zhang et al. (2019). The calculated desired
trajectory is tracked by the sliding mode controller in (22) with the
controller gains K, = diag(210,13,10) and X, = diag(10, 10, 10). To
evaluate the proposed sensor fault detection, isolation, and estimation
scheme, simulation results of the following scenarios are provided: S1:
sensor fault-free scenario; S2: occurred a sensor fault; S3: sensor fault
estimation with a modified interval observer structure; S4: comparative
results with existing methods.

4.1. S1

The Luenberger observer parameters are chosen as C; :=diag(10,
1100, 1400) and C, :=diag(54, 1000, 1800). The interval observer pa-
rameters designed for the =, and =, subsystems are set as a;; = 1,
ay =10, v, = 1073, gy, =10, a; = 0.01, a;, = 0.01, yj, = 1075, B, =
1073, 3 = 0.01, a3 = 0.01, 3 = 1075, B3 = 1073, @5y = 0.5, &y, = 0.01,
By =5 % 1073, 1y =2 % 1074, @3 = 1, ayy = 50, fyy = 2 * 1073,
Yar =5 % 1074, @33 = 20, ayy = 10, fry =5 % 1072, and 7,5 = 1 % 1074,

The observer structulF(M) with the chosen parameters enables an
accurate estimation of the system state & in (8). The initial values
of the observer estimations for £, and &, are &,(0) = [0,0,0]” and
&,(0) = [0,0,0]". Specifically, the estimations for &, £,, and &5 for
S1 are shown in Fig. 3(a), (b) and (c), respectively. It can be seen that
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accurate estimations of the & subsystem states can be achieved by the
designed Luenberger observer (14).

Also, the estimation and corresponding actual state for &, is illus-
trated in Fig. 4. As can be seen in Fig. 4(a), (b), and (c), accurate
estimation of &, &, and &,3 can be achieved by selecting observer
gains carefully. The effectiveness of the designed observer can be
demonstrated by the estimation results in Figs. 3 and 4. The real-time
state accurate observation can be further seen from the local zoom
in the figures. It is clear that using the designed states observer (14)
and (15) with reasonable observer gains that can achieve efficient
estimations of the system states & and &,.

As depicted in Figs. 5-7, the upper and lower interval bounds of
the corresponding variables Z,, Z,, £4, and =, in subsystems =| and
£, can be estimated adaptively by employing the designed interval ob-
servers (23)-(28) and (38)-(43). By adaptive updating, the correspond-
ing states enter the interval with the estimated bounds. The initial val-
ues of the interval estimations are Z 1(0) =[-1073,-1,-0.1]7, 21 0) =
(1073,1,0.1)7, £, = [1073,1075,10]T, =, = [-1073,-1073,-107%]",
o = (107,103,107, and =, = [ -3 * 1073, —1075,-10-5]". In
specific, for the =, subsystem, it can be seen from Fig. 5(a), (b) and (c)
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that =, <

<=z
laws and =,

| holds by using the constructed adaptive estimation

<
1 =
| £ Ep) £ E satisfies as in Fig. 5(d), (e), and (f).

Meanwhile, the variables Z, and =, in the =, subsystem can enter
into the corresponding estimation interval [gz,zz] and [:702,5@2] by
employing the observer structures (38)—(43), as in Figs. 6 and 7. The
initial values of the interval estimations in the =, subsystem are Z ) 0) =
[-1073,-1,-0.11", Z,(0) = [1073,1,0.1]", &, = [1073,1075,1075]7,
Zp = [-1072,-1073,-1073]7, Z; = [1073,1073,107]7, and =, =
[—3 % 103,-105 ,—10-5]". 1t is worth noting that for vehicle-
integrated motion systems (8) and (9) with external perturbations and
uncertainties, §2, 22, Z 9y and E@z can be estimated adaptively using
the presented method. The constructed observer structure is simple and
effective. As illustrated in Fig. 6 and 7, the interval bounds are real-time
adaptively updated allowing us to obtain the interval upper and lower
bounds Z,, Z,, Z 9> and E o, efficiently.
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4.2. S2

The proposed detection and isolation framework can effectively
detect the sensor fault occurrence time moment and isolate the faulty
sensor. Compared to S1, the initial values of the adaptive estimation
interval bounds and the Luenberger and interval observer gains remain
unchanged in S2. In this scenario, a fault occurs in the position sensor
corresponding to &,. As in (53), the sensor fails at the time interval
[5,5.2], namely, S;, = 0.21, for ¢ € [5,5.2], else S|, = 0.

As shown in Fig. 8(a) and (c), with the designed interval observer,
it is easy to detect when a sensor failure occurs and to isolate the
faulty sensor. Some simulation results similar to S1 are ignored in the
subsection due to space limitations. It can be observed from Fig. 8(c)
that the sensor fault causes =y, to be outside the estimated interval
[5012,5012]. Specifically, the moment when the interval boundary is
exceeded can be seen as the sensor fault occurs time. In addition, by
further combining Fig. 8(b) and (d), the faulty sensor can be isolated.
That is, it is easy to obtain that the position sensor corresponding to
S, is faulty.

Moreover, the interval estimation results for the b subsystem are
depicted in Fig. 9(a)-(f), where the corresponding interval bounds
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Fig. 10. Sensor fault estimation for S3.

still can be adaptively estimated effectively for sensors without faults.
Accordingly, it concludes that effective detection and isolation of sensor
faults can be achieved with the designed interval observer structure.

4.3. S3

By modifying the interval observer as Theorem 3, the sensor fault
interval bounds can be estimated by (57)-((64) ). In contrast to S1 and
S2, the position sensor fault for S3 is set to S}, = 0.3, for ¢ € [5,7.6], else
S, = 0. The remaining observer parameters and initial values are the
same as S2. The fault estimation parameters are chosen as zi;; = 1073,
My = 1073, ¢, =1, p;y = 2, 15 = 80, Hip = 60, £15 = 0.02, pj; = 0.5,
T = 1073, py3 = 1073, 215 = 0.002, py3 = 0.02, pi; = 1074, ppy = 1074,
£51 = 0.001, py; = 0.02, Hizg = 8, pyy = 6, £y = 0.18, pyy = 0.2, ip3 =
1074, 4ip3 = 1074, £,3 = 0.001, and p,3 = 0.002. The corresponding initial
values are S;(0) = [1073,1072,1073]T, $;(0) = [-1073,-1073,-107%]7,
5,(0) = [1074,5 % 10,3 % 1074]T and S,(0) = [-1074, =104, —=10~4]".

As illustrated in Fig. 10(a), the sensor fault causes the sensor esti-
mation €, deviates from the corresponding state £,. Unlike S2, by
modifying the interval observer, the corresponding interval bounds
estimations can be adaptively updated such that S;, < S, < S}, holds,
as in Fig. 10(b). Meanwhile, as in Fig. 10(c), the interval bounds for
the sensor fault S12 can be estimated adaptively. Fig. 10(d) and (e) are
provided as representative results to illustrate that the corresponding
intervals for the fault-free sensors can also be adaptively estimated, and
the rest of the similar results are ignored for simplicity. The simulation
results in Fig. 10(a)-(e) illustrate that the modified interval observer
can achieve an effective sensor fault estimation.

4.4. S4

To further analyze the advantages of the designed method, com-
parative results with existing fault diagnosis methods are provided.
The fault (53) occurs in the position sensor corresponding to &, with
S, =02, for 5 <t < 5.1, else S, = 0. The following methods
are implemented: (1) Fixed: Luenberger observer with a fixed thresh-
old (Shen et al., 2018). (2) CIO: Fault diagnosis using a conventional
interval observer (Zhang & Yang, 2017). (3) AIO: The proposed interval
fault observer with adaptive estimation. The parameters are chosen as:
¢, :=diag(l, 11, 14), C, :=diag(54, 1, 18), @; = 0.05, a;; = 0.07,
i =6%107% 8, =3%103,a,=1,a, =1, 75 = 0.1, fj, = 0.18,
a5 = Loag =1, 75 = 009, f; = 01, i, = 05, ay = 0.01,
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Py =5 % 1073,y =2 % 107, @y = 1, ayy = 50, fr; = 2 % 1073,
Yop =5 1074, @03 =20, ayy = 10, fpy =5 1073, and 7,3 = 1 = 1074,

The detailed comparative results are illustrated in Fig. 11. For
the traditional fixed-threshold fault diagnosis method, as shown in
Fig. 11(a) and (c), there are false alarms at + € (8,10)s and r = 5 s.
Because the threshold is exceeded, the fault occurrence is identified
mistakenly for the healthy position sensor and angle sensor. And the
occurred sensor fault is not detected as in Fig. 11(b), due to a large
threshold. For the classical interval observer method, false alarms exist
att € (7,10)s and r = 2 s as in Fig. 11(a) and (c). Meanwhile, CIO can
also detect the sensor fault effectively as in Fig. 11(b), nevertheless,
the sensitivity is reduced compared to the AIO. Using the proposed AIO
framework, it can be observed from Fig. 11(b) that the occurred sensor
fault is detected effectively. Moreover, for healthy sensors, there are no
false alarms, as shown in Fig. 11(a) and (c). Clear adaptive updates can
be seen in Fig. 11, which is the reason for the enhanced performance.

The classical fixed threshold method and the interval observer
method rely on prior information to select an appropriate threshold.
However, for a practical system, the health sensor may be misjudged as
faulty by selecting a small threshold. When choosing a large threshold,
the occurred sensor fault may be undetected. In contrast, with the
designed AIO framework, the thresholds can be adaptively updated to
improve fault sensitivity while effectively avoiding false alarms and
missed alarms, as shown in Fig. 11. Moreover, the boundary informa-
tion of the disturbances and uncertainties is unnecessary, which reduces
the reliance on prior knowledge and makes it more applicable.

5. Conclusion

In this paper, a sensor fault detection, isolation, and estimation
framework is designed for vehicle-integrated motion systems. It can be
observed from simulation results that effective estimations of the state
and the output interval bounds can be obtained when no sensor faults
occur. The corresponding output caused by a sensor fault can exceed
the estimated intervals. Thus, we can effectively detect the sensor fault
occurrence moment and isolate the faulty sensor. When the proposed
framework is reconstructed, the sensor fault can be estimated. Note
that the proposed method is not only applicable to intelligent vehicle-
integrated motion systems but can also be applied to quadrotor (Wang,
Su, Han, & Chen, 2019), suspension (Huang, Wang, & Pan, 2023), linear
motor (Liu & Sun, 2023), switched systems (Yan, Xia, Feng, & Zhang,
2023), robotic manipulators (Roveda, Forgione, & Piga, 2020; Yuan
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& Sun, 2023), surface vehicles (Guidance and control methodologies for
marine vehicles: A survey; Wang & Karimi, 2019; Wang, Karimi, Li, &
Su, 2019; Wang & Su, 2019), etc. Future work focuses on the design of
a fault-tolerant control (Wang, Pan, & Sun, 2022) scheme and taking
actuator fault (Qiu, Wei, Karimi, & Gao, 2017) into account.
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